

Student Name		

Teacher's Name:

Extension 1 Mathematics

TRIAL HSC

August 2023

General Instructions	 Reading time – 10 minutes Working time – 120 minutes Write using black pen NESA approved calculators may be used A NESA reference sheet is provided with this paper In questions 11-14, show relevant mathematical reasoning and/or calculations
Total marks:	Section I – 10 marks
70	Attempt Questions 1-10
	 Allow about 15 minutes for this section

Section II – 60 marks

- Attempt questions 11-14
- Allow about 1 hour and 45 minutes for this section

SECTION I

10 marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1 The number of different arrangements of the letters of the word SPUDDLE which begins with

the letter P is:

A. $\frac{7!}{2!}$ B. $\frac{6!}{2!}$ C. $\frac{6!}{5! \, 2!}$ D. $\frac{7!}{5! \, 2!}$

2 What is the remainder when $P(x) = x^4 - 3x^3 + 6x^2 - 2$ is divided by (x - 1)?

A. 2
B. -4
C. 8
D. 12

- **3** Which of the following vectors is parallel to the vector $\overrightarrow{OQ} = 3\underbrace{i}_{a} \underbrace{j}_{a}$?
 - A. $\overrightarrow{OA} = \underset{\sim}{i} 3j$
 - B. $\overrightarrow{OB} = 12 \underset{\sim}{i} 6 \underset{\sim}{j}$

C.
$$\overrightarrow{OC} = 3i + j$$

D.
$$\overrightarrow{OD} = -\underbrace{12i}_{\sim} + 4j$$

4 Given that $\tan \alpha = \frac{3}{4}$ and $\tan \beta = \frac{5}{12}$, what is the value of $\cos(\alpha + \beta)$?

A.	$\frac{63}{65}$		
B.	$\frac{33}{65}$		
C.	56 65		
	16		

D. $\frac{10}{65}$

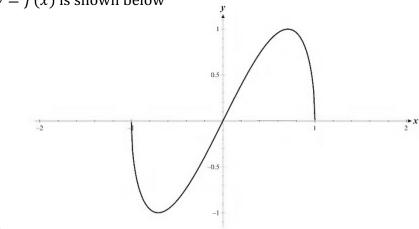
- **5** A spherical balloon is filled with air at a rate of $108 \pi \text{ cm}^3/\text{ min}$. At what rate is the radius of the balloon increasing when the radius is 3 cm ?
 - A. 3.6 cm / min
 - B. 3 cm / min
 - C. 1 cm / min
 - D. 4 *c*m / min
- **6** Given that $f(x) = \ln (x 2)$ what are the domain and range of $f^{-1}(x)$?
 - A. x > 2, all real y
 - B. x < 2, all real y
 - C. all real x, y > 2
 - D. all real x, y < 2

7 The parametric equation of a function is given by $x = \sin t$ and $y = \sin 2t$.

What is its cartesian equation

A.
$$y = 2x\sqrt{1-x^2}$$
 { $0 \le x \le 1$ }
B. $y = 2x^2 - 1$ { $0 \le x \le 1$ }
C. $y = 1 - 2x^2$ { $0 \le x \le 1$ }
D. $y = \sqrt{\frac{x+1}{2}}$ { $0 \le x \le 1$ }

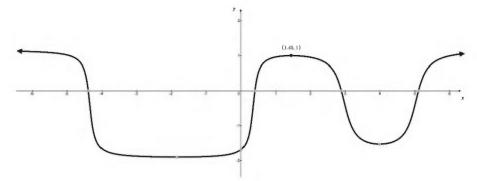
8 The graph of y = f(x) is shown below



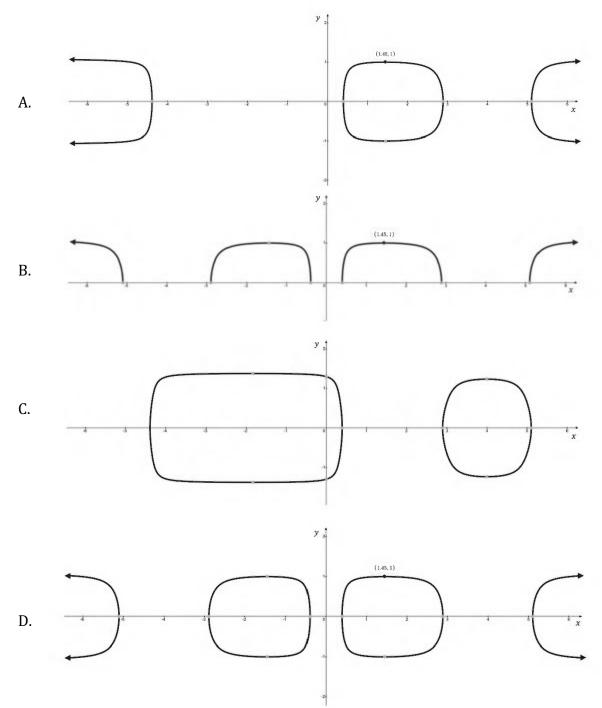
f(x) could be

- A. $\sin(-2 \arcsin x)$
- B. $\arcsin(-2\sin x)$
- C. $sin(2 \arcsin x)$
- D. $\arcsin(2\sin x)$

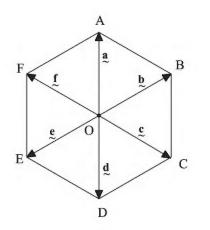
9 The graph of y = f(x) is shown below



Which of the following could be the graph of $y^2 = f(|x|)$



10 *ABCDEF* is a regular hexagon made from 6 equilateral triangles with side-lengths of 2 units as shown below. $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = \mathbf{c}$, $\overrightarrow{OD} = \mathbf{d}$, $\overrightarrow{OE} = \mathbf{e}$, and $\overrightarrow{OF} = \mathbf{f}$



What is the value of $\operatorname{proj}_{e} a \cdot \operatorname{proj}_{f} e$ (the dot product of the vectors formed by projecting a and e onto c and f respectively)?

- A. −2
 B. −1
 C. 1
- D. 2

End of Section I

SECTION II

60 marks

Attempt Questions 11-14.

Allow about 1 hour and 45 minutes for this section.

Answer each question on a new page in the answer booklet.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW page

- **a)** For the vectors $\underbrace{u}_{\sim} = \underbrace{i}_{\sim} + \underbrace{j}_{\sim}$ and $\underbrace{v}_{\sim} = 2\underbrace{i}_{\sim} \underbrace{j}_{\sim}$, evaluate the following
 - **i)** u + 3v **1**

ii)
$$u \cdot v$$

b) Show that
$$\sin(75^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4}$$
 2

c) Differentiate
$$8 \tan^{-1} \left(\frac{x}{2}\right)$$
 2

d) Solve
$$\frac{5x}{x+1} \le 4$$

e) Find the exact value of $\int_0^3 x\sqrt{x^2 + 16} \, dx$ by using the substitution $u = x^2 + 16$ **3**

f) For what value(s) of *a* are the vectors
$$\begin{pmatrix} 2a \\ -6 \end{pmatrix}$$
 and $\begin{pmatrix} a-3 \\ 6 \end{pmatrix}$ perpendicular 3

End of Question 11

a) Given that $X \sim Bin(n, p)$, $\mu = 12$ and $\sigma^2 = 4$

i) Show that
$$p = \frac{2}{3}$$

iii) By considering a six-sided die or otherwise, describe a possible real-worldscenario that could be represented by this binomial distribution.

iv) Find
$$P(X = 4)$$
 2

b) The 4 distinct roots of the polynomial
$$x^4 + 4x^3 - x^2 - 16x - 12 = 0$$
 are α , β , γ , and δ **2**

Find the value of
$$\frac{1}{\alpha\beta\gamma} + \frac{1}{\alpha\beta\delta} + \frac{1}{\alpha\gamma\delta} + \frac{1}{\beta\gamma\delta}$$

c) Use mathematical induction to prove that

3

1

$$4 \times 1! + 9 \times 2! + \dots + (n+1)^2 \times n! = (n+2)! - 2$$

for all integers $n \ge 1$

d) The multiple-choice section of the Mathematics Extension 1 HSC exam consists of 10 questions, each with 4 options. Assuming students do not leave any question unanswered, what is the minimum number of candidates that must sit the test to ensure that there are at least 3 identical sets of answers?

- e) The student representative council at a particular Sydney high school consists of 42 students, 5 from each of the Years 7-10, 10 from Year 11, and 12 from Year 12.
 - i) A subcommittee of 18 students is needed to research the positive affect of banning 1 mobile phones from schools. It will consist of 5 students each from Years 11 & 12 (for a total of 10), and 2 students each from the other Years 7-10 (for a total of 8).

In how many ways can this subcommittee be formed?

ii) In how many ways can the subcommittee sit around a circular table, if the2five Year 12 students are to all sit together ?

End of Question 12

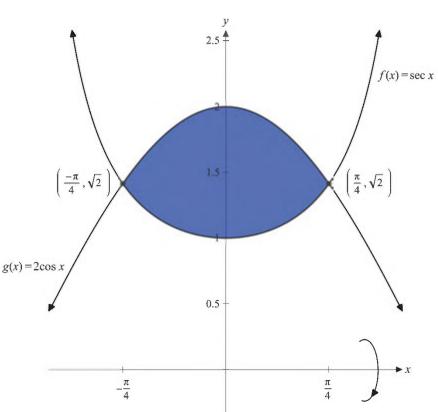
a) Solve the differential equation $\frac{dy}{dx} = 3(y+2)\sqrt{x}$, given that y(0) = 7 **3**

Give your answer in the form y = f(x)

- **b)** Express $y = 2\cos x + 2\sqrt{3}\sin x$ in the form $R\cos(x \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$ **2**
- **c)** Part of the graph of $f(x) = \sec x$ and $g(x) = 2\cos x$, which intersect when

 $x = -\frac{\pi}{4}$ and $x = \frac{\pi}{4}$ is shown below

Find the exact volume of the solid formed when the shaded area bounded by f(x) and g(x) is rotated about the x - axis.



d) Using research and years of empirical data, Mr Harroothunian has determined that only $\frac{1}{3}$ of the espresso coffees made in Melbourne's coffee shops meet his exacting standards. During his holidays, Mr Harroothunian travelled to Melbourne and randomly sampled 50 coffees.

Letting \hat{p} represent the sample proportion of coffees that pleased Mr Harroothunian by meeting his standards, and assuming that the sample is normally distributed:

- i) Find the mean and standard deviation of the sample
- ii) By using the table below or otherwise, find the probability that Mr Harroothunian2was pleased with at least 40% of the coffees that he sampled

Table of values $P(Z \le z)$ for the normal distribution N(0,1)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015

e) Given that
$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$$
 (do not show this) 3

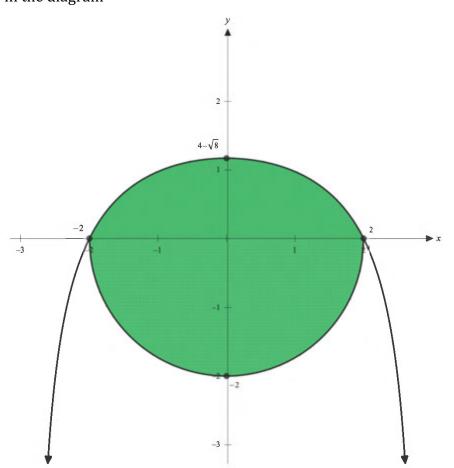
and by selecting two appropriate values of *x*, show that:

$$2^{n-1} = \binom{n}{0} + \binom{n}{2} + \dots + \binom{n}{n-1} \text{ when } n \text{ is odd.}$$

End of Question 13

2

- **a)** Use the product rule to show that $y = x \int f(x) dx$ is a solution to the differential **1** equation $x \frac{dy}{dx} = y + x^2 f(x)$
- **b)** The region enclosed by $y = 4 \frac{8}{\sqrt{8 x^2}}$ and the semi-circle $y = -\sqrt{4 x^2}$ is **3** shaded in the diagram



Find the exact value of the area of the shaded region.

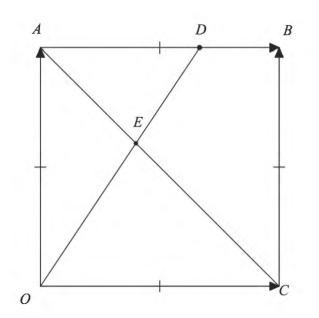
Question 14 (continued)

c) Let
$$f(x) = \frac{x}{(x+e)^2}$$

i) Use the substitution u = x + e to show that $\int_0^e f(x) dx = \int_e^{2e} \frac{u - e}{u^2} du$ 2

ii) Hence find the exact value of
$$\int_0^e f(x) dx$$
 in its simplest form. **2**

d) *OABC* is a square with $\overrightarrow{OA} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$



i) Find \overrightarrow{OB}

1

ii) Given that *D* is a point on *AB* such that
$$\overrightarrow{AD} = \frac{2}{3} \overrightarrow{AB}$$
, find \overrightarrow{OD} 2

iii) Given that *OD* intersects *AC* at *E* and that
$$\overrightarrow{OE} = (1 - \lambda)\overrightarrow{OA} + \lambda\overrightarrow{OC}$$
, find λ **3**

End of paper

THIS PAGE LEFT BLANK INTENTIONALLY

THIS PAGE LEFT BLANK INTENTIONALLY

THIS PAGE LEFT BLANK INTENTIONALLY

2023 EXI TRIAL POI Official STHS Mathematics Paper: Bauhaus 93 edition - 2023 8 9 10 BADBBCACDC (MC) 1×61 B P (2) $P(1) = 1^{4} - 3x1^{3} + 6x1^{2} - 2$ = 1 - 3 + 6 - 2 = 2 $\vec{3} \quad \vec{OP} = 3\dot{z} - \dot{y} \quad \vec{OD} = -12\dot{z} + 4\dot{y} \\ = -4(3\dot{z} - \dot{y}) \quad \vec{D}$ 5/3 3/3 $=\frac{4}{5} \times \frac{12}{12} - \frac{3}{5} \times \frac{5}{12}$ = 33 B $\frac{3}{dt} = 108\pi \text{ cm}^3/\text{min} \frac{dr}{dt} = ? \quad V = \frac{4}{3}\pi r^3 : \frac{dV}{dr} = 4\pi r^2$ $\frac{dV}{dt} = \frac{dV}{dr} \frac{dr}{dt} \qquad \vdots \qquad \frac{dr}{dt} = \frac{dV}{dt} = \frac{108\pi}{108\pi} r = 3$ $\frac{dV}{dr} = \frac{dV}{dr} = \frac{108\pi}{108\pi} r = 3$ = 3cm/min (B) $\int f(x) = \ln(x-2)$ $f(x) = \begin{cases} f(x) & f(x) \\ 0 & f(x) \\ 0 & 0 \\ 1$ C 7) y= sinzt x=sint Sin2744052 x = 1 1 E T VI-72 = 2 sint cost $Cos^{2}7c = |-Sin^{2}x.$ $Cosx = \sqrt{(-Sin^{2}x)}$ = 2xcost (A)= 2x J - r2 =11-22

Official STHS Mathematics Paper: Bauhaus 93 edition - 2023

POZ

> role mut we eliminate B cuel D 8 as They would result in Periodic function. , must be (C) -> you can also sub in points (trial and ever) y2=f(1x1) must be symmetrical arount The y-axis (because of The /x/) and The y-axis (Me y2) D) The only one That is Proja = 19/12/ cos LAOC . x C = 2×1 × cos 120° × C = 2x-1/2 C = - c which is the save as f as LAOC=180°. both Proja and Proj e $\frac{Proj}{2} = \frac{12}{11} \frac{f}{f} \cos LEDF \times \frac{f}{f}$ $= \frac{2 \times 1 \times \cos 60^{\circ} \times \frac{f}{f}}{2}$ 1 600 1200 = ax/2×f = Â so Proj a Proj e is just = f. f (dot product of 2 mitue (lus) · (C)

Ŵ (a) $y = \hat{c} + \hat{j}$ $y = 2\hat{c} - \hat{j}$ $(i) \quad y + 3y = (\dot{z} + \dot{z}) + 3(2\dot{z} - \dot{z}) \quad (ii) \quad y = 2 - 1$ $= 7\dot{c} - 2\dot{o}$ 5 Sin 75° = Sin (30°+45) = Sinzo° Cos45° + Coszo° sin45° $= \frac{1}{2} \times \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}$ = JZ + JE as required (c) $d \left(8 \tan^{-1}\left(\frac{x}{z}\right) \right) = 8 \times \frac{1}{z} \times \frac{1}{1 + \frac{x}{z}^2}$ $= \frac{4}{1+2c^{2}} \sqrt{arxy} = \frac{4xy}{(1+2c^{2})xy} = \frac{16}{(1+2c^{2})xy}$ (a) $\chi \neq 1 \longrightarrow 0$ $\frac{5\infty}{4} \leq 4$ now some. $\frac{5\pi}{x+1} = \frac{1}{2} = \frac{5\pi}{5} = \frac{4\pi}{x+1} : x = \frac{4\pi}{x} = \frac{5\pi}{1} = \frac{4\pi}{x}$ test a point $x=0, \frac{5\pi}{1} = \frac{4\pi}{x}$: solve between - by ie -12254

Poz

Official STHS Mathematics Paper: Bauhaus 93 edition - 2023

POI

(1e) Jx Vx2+16 $u = x^2 + 16$ $\frac{du}{dr} = 25C$ $= \frac{1}{2} \left(\sqrt{x^2 + 16} \cdot 2x dx \right)$ du = 2x dx $= \frac{1}{2} \left(\sqrt{4} \cdot \frac{1}{2} = \frac{1}{2} \left[\frac{2}{3} \frac{3}{2} \right]^{2} \right)$ 7(=0-74=16 2=3 4=25 $\frac{2}{4 \times 16} = \frac{-2}{16} = \frac{-2}{16} = \frac{-2}{16} = \frac{-2}{3} = \frac{$ $\begin{array}{c} (f) (2a) (a-3) \\ (-6) (6) = 0 \quad (For vectors to be \perp) \end{array}$ $aa^2 - 6a - 36 = 0$ 92-3a-18 =0" (a-6)(a+3)=0 : a=6ara=-3 Question 12 (a) X~Bin(A,P) N=12, 82=4. (i) $\mu = np$ and $\sigma^2 = npq$ (q=1-p) $np=12 - O \quad npq = 4(2)$ $\frac{2}{10} = \frac{1}{12} = \frac{1}{3} = \frac{$ (ii) np=12 $n=12=12x_3=18$ (iii) X~Bin(18,2,3) Rolling a six-sided die 18 times and findig The probability of Polling at >2 $(iv) P(X = H) = {}^{18} C_{4} \left(\frac{2}{3}\right)^{4} \left(\frac{1}{2}\right)^{4} = 0.000126...$

Question 12 ... (b) $x^2 + 4x^3 - x^2 - 16x - 12 = 0$ $\frac{\alpha + \beta + \delta + \delta}{\alpha} = -\frac{b}{\alpha} = -\frac{b}{\alpha}$ $\frac{1}{\alpha B \gamma} + \frac{1}{\alpha B S} + \frac{1}{\alpha \gamma S} + \frac{1}{\beta \gamma S}$ $\frac{\delta + \delta + B + \alpha}{\alpha B \delta S} = \frac{-12}{-12} = \frac{1}{3}$ (c) RTP $4x1! + 9x2! + \dots + (n+1)^{2}xn! = (n+2)! - 2$ For n=1 LHS= 4x1 RHS= (1+2)!-2 = 3!-2 = 4 =4 . true for n=1 Assume true far n=k, k ∈ Z+ c.e. 4x11+9x21++ (K+1) x k! = (K+2)!-2 $RTP \left[\frac{1}{4} \times \frac{1}{4} + 9 \times \frac{2}{4} + \dots + (|C+D^2 \times k! + (|k+2)^2 \times (|k+1)|) = (|C+3|) - 2 + \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} + \frac{1}{4} \times \frac{1}{4}$ $LHS = 4 \times 1 + 9 \times 2 + \cdots + (K+1)^2 \times k + (K+2)^2 \times (K+1) + (K+2)^2 \times (K+2)^2 \times (K+1) + (K+2)^2 \times (K$ $= (K+2)! - 2 + (K+2)^{2} (k+1)! (from assumption)$ = (K+2) + (K+2)(K+2)(K+1) - 2= (K+2)! + (K+2)(K+2)! -2 =(1+(k+2))(k+2) + -2= (K+3)(K+2) -2 = (k+3)1-2 i if true for n=k, Then true for n=k+1 but the for n=1, ... the for n= 2, 3,... :. the Yn Et

9/2 continueal. (d) 10 p's, 4 options This is a pigenhole or "curst case scenario" an. read at least 3 identical sect of answers. wurst case 1st unique set = 410 = 1048576 2nd miguest = 410 = 1048576. + 1 mone (minim # of canditaly) i= 410/01 = 2097153 H2 studiets Y7:5 Y8:5 Y9:5 Y10:5 Y11:10 Y12:12 $= (52)^{4} \times {}^{10} c_{5} \times {}^{12} c_{5} = 1995840000$ (11) Fix The Y12 students (so now we have - 14 items). in a circle. together and seat Them first. = 1x S!x13! = Prettylarge ... Question 13 dy = 3(y+2) Jac J(0)=7. $\int \frac{dy}{ht_2} = \int 3\sqrt{2t} dx = \int 3x^{l_2} chc.$ $ln/y+2/=\frac{3}{3n}z^{3/2}+C=2x^{3/2}+C$ $|y_{72}| = e^{(2\pi^{3}/2 + c)}$ $y_{72} = e^{-c} e^{2\pi c^{3}/2}$

Pai alternathy $7 = Ae^{2} - 2 e(0,7)$ $\therefore A = 9$ = $\frac{(2x^{3}z + lnq)}{y = qe^{2x^{3}z}} = \frac{(2x^{3}z + lnq)}{-2} \frac{(2x^{3}z + lnq)}{y = e^{-2}} \frac{(2x^{3}z + lnq)}{y = e^{-2}} \frac{(2x^{3}z + lnq)}{-2}$ (b) $y = 2\cos x + 2\sqrt{3} \sin x$ also M= R cos (n-2) = R (Cosx cosa + sinx sina) Resolving coefficients for cose met sine. REDSK=2 0 Rsind = 2/3 2 :- 2 :- 1 $\tan \alpha = \frac{2\sqrt{3}}{2} = \sqrt{3} \quad \therefore \quad X = \overline{11}_{3} [0, \overline{11}_{2}]$ sul into (1). Ras 11/2 = 2 : R=4 $\frac{1}{2} \log (x - \overline{1}_3) = 4 \log (x - \overline{1}_3) = \frac{1}{2} \log (x - \overline{1}_3)$ $V = \overline{\pi} \left(\begin{array}{c} \int (g_{rx})_{dx}^{2} - \int (f_{rx})_{dy}^{2} \right) dx \\ -\overline{\pi}_{iy} & = \overline{\pi}_{iy} \\ -\overline{\pi}_{iy} & = \overline{\pi}_{iy} \\ = \overline{\pi} \int (2\cos x)_{dx}^{2} - \overline{\pi} \int see^{2x} dx \\ -\overline{\pi}_{iy} & = \overline{\pi}_{iy} \\ = 2\overline{\pi} \int (4\cos^{2} x)_{dx} - 2\overline{\pi} \int see^{2x} dx \\ -\overline{\pi}_{iy} & = 2\overline{\pi} \int (5ee^{2x})_{dx} dx \\ = 2\overline{\pi} \int (4\cos^{2} x)_{dx} dx \\ -\overline{\pi}_{iy} & = 2\overline{\pi} \int (5ee^{2x})_{dx} dx \\ = 2\overline{$ ()

question B(c)...

908 $V=4\pi \int (1+\cos 2\pi)dx = 2\pi \int \sec^2 x dx$ $= h \pi \left[2c + \frac{\sin 2x}{2} \right] - 2\pi \left[\tan x \right]^{V/4}$ $= 4\pi \left(\left(\overline{n}_{4} + \frac{\sin(\overline{n}_{2})}{2} \right) - \left(0 + \sin \theta \right) - 2\pi \left(\tan \overline{n}_{4} - \tan \theta \right) \right)$ TI2+2TI-2TT $V = T r^2 u^3$ (D) P= 1 q=2 n=50 $\overline{E}(\hat{p}) = n p$ stundard deviation = $\sqrt{Var(\hat{p})}$ 1/3 x 2/3 = <u>15</u> OR P(Z≥1)=P(1-P(Z≤1) (ii) $Z - score = \frac{0.4 - \frac{1}{3}}{15} = \frac{15x1}{15} = 1$ $P(\hat{p} \ge 0.4) = P(Z \ge 1) = \frac{167}{167}$ (empirical) = 15.871 $e) (1+x)^{n} = {\binom{n}{0}} + {\binom{n}{1}} x + {\binom{n}{2}} + \cdots + {\binom{n}{n+1}} x + {\binom{n}{n}} x^{n} + {\binom{n}{n}} x^{n}$ Pick x = 1 and x = -1 $(1+1)^{n} = \binom{n}{2} + \binom{n}{1} \cdot 1 + \binom{n}{2} (1)^{2} + \cdots + \binom{n}{n-1} (1)^{n-1} + \binom{n}{n} (1)^{n} - 0$ $\frac{(l-1)^{n}}{(l-1)^{n}} = \binom{n}{(l-1)^{n}} + \binom{$ $O = \binom{n}{6} - \binom{n}{1} + \binom{n}{2} - \cdots + \binom{n}{n-1} - \binom{n}{n} - (2) \quad (as n is odd).$ D+D $2^{n} + 0 = \binom{n}{0} + \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \binom{n}{2} + \binom{n}{2} + \binom{n}{n-1} + \binom{n}$ $2^{n} = 2\left(\binom{n}{6} + \binom{n}{2} + \cdots + \binom{n}{n-1}\right)$ $2^{n-1} = \binom{n}{6} + \binom{n}{2} + \cdots + \binom{n}{n-1} \text{ as required}.$

Question 14 (A) y = x (f(x) dxU=2c V=Sfrasdecdu=1 dv=fras $\frac{dy}{dr} = V du + u dv =$ $\frac{dy}{dx} = \int f(x) dx \cdot l + x \cdot f(x)$ $= \int f(x) dy(x + x f(x)).$ $\frac{x dy}{dx} = \chi \left(\int f(x) dx + \chi f(x) \right) = \chi \left(\int f(x) dx + \chi^2 f(x) \right)$ xdy = y+x2fa): y=z(fa) dx is a solubor to MIDE (6) $A = A_1 + A_2$ = (4 - 8) dx + avec semi-arde -2 VB-x2 = otradius2 $= 2 \left(\frac{4}{\sqrt{2}} - \frac{8}{\sqrt{2}} \right) + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{2}{\sqrt{2}}$ = 2 (4- 8×1)dx+2TT $= 2 \times \left[4 \pi - 8 \operatorname{arcsin} \left[\pi \right]^{2} + 2 \pi \right]$ $= 2 \times \left[\left(4 \times 2 - 8 \operatorname{avcsin} \left(\frac{2}{2 \sqrt{2}} \right) \right) - 0 \right] + 2 \pi$ $=2\times\left[8-8\times\pi\right]+2\pi$ = 16 - 4T + 2T $= 16 - 2\pi u^2$

Question 14... Official STHS Mathematics Paper: Bauhaus 93 edition - 2023 PIC $G(i) \int f(x) dx = \int \frac{x}{(x_{te})^2} dx$ U=2+e=>2=u-e du =1 : dz=du $= \int \frac{u-e}{u^2} du$ $u=e \quad u^2$ $u = e \quad u^2$ $u = e \quad u^2$ $u = e \quad u^2$ $\begin{array}{c} e & 2e \\ (ii) \int f(x)dx = \int \frac{u-e}{u^2} du &= \int \frac{2e}{\left(\frac{u}{u^2} - \frac{e}{u^2}\right)du} = \int \left(\frac{1}{u} - eu^{-2}\right)du \\ &= \int \frac{1}{2e} \int \frac{2e}{u^2} du &= \int \frac{1}{2e} \int \frac{1}{u^2} - \frac{1}{u^2} du \\ &= \int \frac{1}{2e} \int \frac{1}{2e} \int \frac{1}{2e} \int \frac{1}{e} \int \frac{1}{e$ $= \left(\ln 2e + \frac{e}{2e} \right) - \left(\ln e + \frac{e}{e} \right) = \ln 2e + \frac{1}{2e} - \left(1 + 1 \right)$ = ln2+lne -3 = ln2-1/2 (a) (i) $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{OC} = \begin{pmatrix} -4+3\\ 2+4 \end{pmatrix} = \begin{pmatrix} -1\\ 7 \end{pmatrix}$ (i) $\vec{OB} = \vec{OA} + \vec{AB} = \vec{A} + \vec{AB} = \vec{A} + \vec{AB} = \vec{A} + \vec{A} + \vec{A}$ $= \left(\frac{-4}{3}\right) + \frac{2}{3}\left(\frac{4}{3}\right) = \left(\frac{-4+2x3}{3}\right) = \left(\frac{-2}{3+2xy}\right) = \left(\frac{-2}{3+8}\right)$ $\overrightarrow{OD} = \begin{pmatrix} -2\\ 17 \end{pmatrix}$ (iii) $\vec{\partial E} = (1-\lambda)\vec{\partial A} + \lambda\vec{\partial E} = (1-\lambda)\binom{-4}{3} + \lambda\binom{4}{3} = (1-\lambda)^{\times-4} + \frac{3}{4}$ $= \frac{f_{4}+4_{1+3\lambda}}{(3-3_{\lambda}+4_{\lambda})^{-}} \xrightarrow{f_{1}-4} \quad but \in on \ oB$ i. gradient $oE = oralient \ oD$ $\frac{1.6}{71 + 3} = \frac{-2}{\frac{17}{2}} = \frac{-6}{17} \implies \frac{119}{2} - 68 = -61 - 18$ 125 1 = 50 i $\lambda = \frac{50}{125} = \frac{2}{5}$ (6) The End